
Evaluation of Semantic Actions in Predictive Non-
Recursive Parsing

José L. Fuertes, Aurora Pérez
Dept. LSIIS

School of Computing. Technical University of Madrid
Madrid, Spain

Abstract— To implement a syntax-directed translator, compiler
designers always have the option of building a compiler that first
performs a syntax analysis and then transverses the parse tree to
execute the semantic actions in order. Yet it is much more
efficient to perform both processes simultaneously. This avoids
having to first explicitly build and afterwards transverse the
parse tree, which is a time- and resource-consuming and
complex process. This paper introduces an algorithm for
executing semantic actions (for semantic analysis and
intermediate code generation) during predictive non-recursive
LL(1) parsing. The proposed method is a simple, efficient and
effective method for executing this type of parser and the
corresponding semantic actions jointly with the aid of no more
than an auxiliary stack.

I. INTRODUCTION
A parser uses a context-free grammar (G) to check if the

input string syntax is correct. Its goal is to build the syntax tree
for the analyzed input string. To do this, it applies the grammar
rules. The set of valid strings generated by this grammar is the
language (L(G)) recognized by the parser.

An LL(1) parser is built from an LL(1) grammar. The
symbols of the grammar are input into a stack. The non-
terminal symbol on the top of the stack and the current symbol
of the input string determine the next grammar rule to be
applied at any time.

A syntax-directed translator is built by defining attributes
for the grammar symbols and semantic actions to compute the
value of each attribute depending on others. This translator
performs syntax analysis, semantic analysis, and code
(intermediate or object) generation tasks.

Semantic action execution [1] can be easily integrated into
several different parser types. But if you have designed a
compiler with a predictive non-recursive LL(1) parser, you will
find that attributes for grammar symbols that have been
removed from the LL(1) parser stack are required to execute
most of the semantic actions [2].

One possible solution is to build the parser tree and then
transverse this tree at the same time as the semantic actions are
performed. The attribute values are annotated in the tree nodes.
Evidently, there is a clear efficiency problem with this solution.
It also consumes an unnecessarily large quantity of resources
(memory to store the whole tree, plus the node attributes,
execution time…), not to mention the extra work on
implementation. For this reason, a good approach is to evaluate

the semantic actions at the same time as syntax analysis is
performed [3] [4].

Semantic actions can be evaluated during LL parsing by
extending the parser stack. The extended parser stack holds
action-records for execution and data items (synthesize-
records) containing the synthesized attributes for non-
terminals. The inherited attributes of a non-terminal A are
placed in the stack record that represents that non-terminal. On
the other hand, the synthesized attributes for a non-terminal A
are placed in a separate synthesize-record right underneath the
record for A in the stack [5].

In this article, we introduce an algorithm for a top-down
translator that provides a simpler, more efficient and effective
method for executing an LL(1) parser and the corresponding
semantic actions jointly with the aid of no more than an
auxiliary stack.

The remainder of the article is organized as follows. Section
II reviews the notions of top-down translators. Section III
describes how the proposed top-down translator works, and
section IV introduces an algorithm to implement this translator.
Section V shows an example of how this method works.
Finally, section VI outlines some conclusions.

II. RELATED WORK
This section reviews the concepts of top-down parsers and

translation schemes that can be used to cover semantic and
code generation aspects.

A. Top-Down Parser
A parser applies context-free grammar rules [6] to try to

find the syntax tree of the input string. A top-down parser
builds this tree from the root to the leaves. At the end of the
analysis, the tree root contains the grammar’s start symbol
and the leaves enclose the analyzed string, provided this is
correct.

Fig. 1. Overview of an LL parser

T. Sobh (ed.), Innovations and Advances in Computer Sciences and Engineering,
DOI 10.1007/978-90-481-3658-2_ © Springer Science+Business Media B.V. 2010 86,

Fig. 2. LL(1) parsing table.

Additionally, a compiler parser always has to produce the
same parser tree for each input string. In the case of an LL(k)
parser, the mechanism used to assure that there is only one rule
applicable at any time is an LL(k) grammar. This grammar
finds out which rule has to be applied by looking ahead at most
k symbols in the input string. The simplest grammar of this
type is LL(1). LL(1) finds out which rule to apply by looking
no further than the first symbol in the input string.

An LL parser (Fig. 1) uses a stack (P) of grammar symbols
and a table (M). The table (M) stores information on which rule
to use to expand a non-terminal symbol on the top of the stack
(A) depending on the current input symbol (ai).

As initially configured the stack contains a symbol to
indicate the bottom of stack ($) with the grammar’s start
symbol on top.

The rows of the LL(1) parsing table (Fig. 2) contain the
non-terminal symbols. The table columns include the terminal
symbols (set of valid input symbols) plus the end-of-string
symbol ($). The table cells can contain a grammar production
or be empty. If the parser accesses an empty cell, there is a
syntax error in the input string. By definition, an LL can
evidently never have more than one rule per cell.

If there is a non-terminal symbol, A, on top of the stack, the
parser inspects the current input symbol, ai, and looks up the
matching table cell, M [A, ai], as shown in Fig. 1. This cell
contains the rule to be applied (see Fig. 2). Then the non-
terminal symbol A that was on top of stack P is removed and
replaced by the right side of the applied rule. The symbol that
was in the left-most position on the right side of the production
(in this case X) is now on top of the stack (see Fig. 3). This is
the next symbol to be expanded.

If there is a terminal symbol on top of the stack, it must
match the current input symbol. If they are equal, the parser
takes out the symbol on top of the stack and moves ahead to the
next symbol in the input string. Otherwise, the parser discovers
that the syntax of the input string is incorrect.

Fig. 3. Configuration of the parser after expanding rule A X Y Z.

B. Translation Schemes
A context-free grammar accounts for the syntax of the

language that it generates but cannot cover aspects of the
semantics of this language. For example, let rule (1) be:
S id := E (1)

Rule (1) reproduces a language’s assignation sentence
syntax perfectly. But it is no use for checking whether the
expression and identifier types are compatible or, conversely,
the programmer is trying to assign an invalid value to that
identifier.

A translation scheme is a context-free grammar in which
attributes are associated with the grammar symbols and
semantic actions are inserted within the right sides of
productions [1]. These semantic actions are enclosed between
brackets { }. The attributes in each production are computed
from the values of the attributes of grammar symbols involved
in that production [7].

So, a translation scheme can include semantic information
by defining:

• as many attributes as semantic aspects need to be stated
for each symbol

• semantic actions that compute attribute values.
For rule (1), for example, the type attribute would be used

for both the identifier (id) and the expression (E), and it would
need to check that id.type is equal to or compatible with E.type.

There are two kinds of attributes: synthesized and inherited
[8]. An attribute is synthesized if its value in a tree node
depends exclusively on the attribute values of the child nodes.
In any other case, it is an inherited attribute. In rule (2), for
example, A.s is synthesized and Y.i is inherited.
A X {Y.i:= g (A.i, X.s)} Y Z {A.s:= f (X.s, Y.i)} (2)

An L-attributed translation scheme assures that an action
never refers to an attribute that has not yet been computed. An
L-attributed translation scheme uses a subset of attributes [9]
formed by:

• all the synthesized attributes
• inherited attributes for which the value of an attribute in a

node is computed as a function of the inherited attributes
of the parent and/or attributes of the sibling nodes that are
further to the left than the node.

Whereas the Y.i and A.s attributes in rule (2) above meet
this requirement, the attribute X.i would not if the rule included
the semantic action X.i:= h (A.s, Z.i).

III. PROPOSED TOP-DOWN TRANSLATOR
In this section we introduce the design of the proposed top-

down translator that can output the translation (the intermediate
or object code in the case of a compiler) at the same time as it
does predictive non-recursive parsing. This saves having to
explicitly build the annotated parse tree and then transverse it
to evaluate the semantic actions (perhaps also having to build
the dependency graph [10] to establish the evaluation order).

We use an L-attributed translation scheme as a notation for
specifying the design of the proposed translator. To simplify
translator design, we consider the following criteria:

Criterion 1. A semantic action computing an inherited symbol
attribute will be placed straight in front of that symbol.

FUERTES AND PÉREZ 492

Criterion 2. An action computing a synthesized attribute of
a symbol will be placed at the end of the right side of the
production for that symbol.

For example, (3) would be a valid rule:
X Y1 Y2 {Y3.i:=f(X.i, Y1.s)}

Y3 Y4 Y5 {X.s:=g(Y3.i, Y4.s)} (3)

To generate the proposed top-down translator the LL(1)
parser is modified as follows. First, stack P is modified to
contain not only grammar symbols but also semantic actions.
Second, a new stack (Aux) is added. This stack will temporally
store the symbols removed from stack P. Both stacks are
extended to store the attribute values (semantic information).

Let us now look at how the attribute values will be
positioned in each stack. To do this, suppose that we have a
generic production X α. This production contains semantic
actions before and after each grammar symbol, where
α ≡ {1} Y1 {2} Y2... {k} Yk {k+1}.

Fig. 4 shows the parser stack P and the auxiliary stack Aux,
both augmented to store the symbol attributes. For simplicity’s
sake, suppose that each grammar symbol has at most one
attribute. If it had more, each position in the extended stacks
would be a register with one field per attribute.

Suppose that these stacks are configured as shown in Fig. 4,
with semantic action {i} at the top of stack P. This means, as
we will see from the algorithm presented in section 4, that this
semantic action should be executed. There is a pointer to the
top of each stack. After executing the semantic action {i}, there
will be another pointer to the new top (ntop) of stack P.

Because of the above-mentioned Criterion 1, the semantic
action {i} uses an inherited attribute of X and/or any attribute of
any symbol Yj (1 ≤ j < i) on the right side of the production to
compute the inherited attribute of Yi. If i = k + 1, the action {i}
computes the synthesized attribute of X, because of Criterion 2.
The following then applies.

• Case 1. The semantic action {i} computes the inherited
attribute of Yi.
The symbol Yi will be in stack P, right underneath
action {i}, which is being executed. Thus, Yi will be the
new top (ntop) of stack P at the end of this execution.
The reference to an inherited attribute of Yi can be
viewed as an access to stack P and, specifically,
position P [ntop].

• Case 2. The semantic action {i} contains a reference to
an attribute of X.

{i} -
Yi at i Yi-1 at i-1

{i+1} - … …
Yi+1 at i+1 Y3 at 3
… … Y2 at 2
Yk at k Y1 at 1

{k+1} - X at
… … … …

Stack P Stack Aux

top

ntop
top

Fig. 4. Translator stacks P and Aux after applying X α while processing the

elements of α.

By definition of the L-attributed translation scheme,
this will always be a reference to an inherited attribute
of X. Only if i = k + 1 will there be a reference to a
synthesized attribute of X. As X will have already been
removed from stack P when the rule X α was
applied, the symbol X will have been entered in stack
Aux. All the grammar symbols Y1, Y2... Yi-1 (preceding
the semantic action {i}) will be on top of X. These
symbols will have been removed from P and inserted
into Aux. Then any reference in {i} to an attribute of X
can be viewed as an access to stack Aux, specifically,
position Aux [top – i + 1].

• Case 3. The semantic action {i} contains a reference to
an attribute of some symbol of α.
By definition of the L-attributed translation scheme,
this attribute will necessarily belong to a symbol
positioned to the left of action {i}, i.e. to one of the
symbols Y1, Y2... Yi-1. These symbols will have already
been moved from stack P to stack Aux. Then any
reference to an attribute of any of these symbols of α
can be viewed as an access to stack Aux taking into
account that Yi-1 will be on Aux [top], Yi-2 will be on
Aux [top – 1]... Y1 will be on Aux [top – i + 2].

The translator is implemented by programming the
semantic actions and inserting them into the parser code. These
semantic actions were written in terms of grammar symbols
and attributes in the translation scheme. They now have to be
rewritten in terms of accesses to the exact stack positions
containing the values of the symbol attributes referenced in
each semantic action.

The two criteria are designed merely to simplify the
translator design. But the method would also work provided
that the semantic action computing an inherited attribute of a
symbol is located before, but not necessarily straight in front
of, that symbol (Criterion 1). It would also be operational if the
semantic action computing a synthesized attribute of, the
symbol located on the left side of the production (X.s) is not at
the right end of the production (Criterion 2) but depends
exclusively on symbol attributes to its left. Therefore, we could
also use rule (4) instead of rule (3). In the first semantic action,
attribute Y3.i will be positioned in the middle of stack P,
specifically P [ntop – 1] in this case. The second semantic
action is also a valid action because X.s does not depend on Y5.
The referenced attributes will be in stack Aux (Y3.i at Aux [top –
 1], Y4.s at Aux [top] and X.s at Aux [top – 4].
X Y1 {Y3.i:= f (X.i, Y1.s)}

Y2 Y3 Y4 {X.s:= g (Y3.i, Y4.s)} Y5
(4)

IV. TOP-DOWN TRANSLATOR ALGORITHM
Having established the principles of the proposed top-down

translator, we are now ready to present the algorithm. This
algorithm is an extended version of the table-driven predictive
non-recursive parsing algorithm that appears in [1].

The algorithm uses a table M’. This table is obtained from
the LL parser table M by substituting the rules of the grammar
G for the translation scheme rules (which include the modified
semantic actions for including stack accesses instead of
attributes). Then the proposed top-down translator algorithm is
described as follows:

EVALUATION OF SEMANTIC ACTIONS IN PREDICTIVE NON-RECURSIVE PARSING 493

Input. An input string ω, a parsing table M for grammar G
and a translation scheme for this grammar.

Output. If ω is in L(G), the result of executing the
translation scheme (translation to intermediate or object code);
otherwise, an error indication.

Method. The process for producing the translation is:
1. Each reference in a semantic action to an attribute is

changed to a reference to a position in the stack (P or Aux)
containing the value of this attribute. Then the translation
scheme is extended by adding a new semantic action at the
end of each production. This action pops as many elements
from the stack Aux as grammar symbols there are in the
right side of the production. Finally, this modified
translation scheme is incorporated into table M, leading to
table M’.

2. Initially, the configuration of the translator is:
• $S is in stack P, with S (the start symbol of G) on top,
• the stack Aux is empty, and
• ω$ is in the input, with ip pointing to its first symbol.

3. Repeat
Let X be the symbol on top of stack P
Let a be the input symbol that ip points to
If X is a terminal Then

If X = a Then
Pop X and its attributes out of stack P
Push X and its attributes onto stack Aux
Advance ip

Else Syntax-Error ()
If X is a non-terminal Then

If M [X, a] = X {1} Y1 {2} Y2… {k} Yk {k+1}
Then
Pop X and its attributes out of stack P
Push X and its attributes onto stack Aux
Push {k+1}, Yk, {k}… Y2, {2}, Y1, {1} onto stack

P, with {1} on top
Else Syntax-Error ()

If X is a semantic action {i} Then
Execute {i}
Pop {i} out of stack P

 Until X = $ and Aux = S

V. EXAMPLE
To illustrate how the method works let us use a fragment of

a C/C++ grammar (Fig. 5) designed to declare local variables.
Fig. 6 shows the translation scheme for this grammar.

Based on the translation scheme, apply step 1 of the
algorithm described in section 4 to build the modified version
of the translation scheme (see Fig. 7). In Fig. 7, references to
the inherited attributes L.type in rule (1) and rule (5) and R.type
in rule (4) have been changed to references to new top (ntop) of

stack P. References to other attributes have been replaced with
references to stack Aux. New semantic actions (calls to the Pop
function) are included to remove symbols that are no longer
needed from stack Aux. The number of symbols to be removed
is the number of grammar symbols on the right side of the
production. This number is passed to the Pop function.

Table 1 shows table M’ for the modified translation scheme
that includes references to stack positions instead of attributes.
We have numbered the semantic actions with the production
number and, if necessary, with a second digit showing the order
of the semantic action inside the production. For instance,
action {1.1} represents {P [ntop]:= Aux [top]}, the first action
of production (1), whereas action {1.2} represents {Pop (3)},
the second action of production (1).

To illustrate how the translator works, consider the input:
‘float x, y;’. This string is tokenized by the scanner as the input
string ω ≡ float id, id;.

(1) D T L ;
(2) T int
(3) T float
(4) L id R
(5) R , L
(6) R λ

Fig. 5. Grammar for C/C++ variables declaration.

(1) D T {L.type:= T.type}
 L ;
(2) T int {T.type:= integer}
(3) T float {T.type:= float}
(4) L id {insertTypeST (id.ptr, L.type);
 R.type:= L. type}
 R
(5) R , {L.type:= R.type}
 L
(6) R λ {}

Fig. 6. Translation scheme for C/C++ variables declaration.

(1) D T {P[ntop]:= Aux[top]}
 L ; {Pop (3)}
(2) T int {Aux[top-1]:= integer; Pop (1)}
(3) T float {Aux[top-1]:= float; Pop (1)}
(4) L id {insertTypeST (Aux[top], Aux[top-1]);
 P[ntop]:= Aux[top-1]}
 R {Pop (2)}
(5) R , {P[ntop]:= Aux[top-1]}
 L {Pop (2)}
(6) R λ {}

Fig. 7. Modified translation scheme for C/C++ variables declaration including
references to stack positions.

TABLE 1
TABLE M’ FOR THE MODIFIED TRANSLATION SCHEME ILLUSTRATED IN FIG. 7.

M’ id int float ; , $
D D T {1.1} L ; {1.2} D T {1.1} L ; {1.2}
T T int {2} T float {3}
L L id {4.1} R {4.2}
R R λ R , {5.1} L {5.2}

FUERTES AND PÉREZ 494

Stack P:

float -
T - {3} -

{1.1} - {1.1} -
L - L -
; - ; -

D - {1.2} - {1.2} -
$ - $ - $ -

Action: M[D,float] M[T,float] float

Stack Aux:

T -
D - D -

(a) (b) (c)

Fig. 8. First stack configurations (the input string is ‘float x, y;’).

The stacks are initialized (Fig. 8(a)) with $ and the
grammar start symbol (D). Figs. 8 to 13 illustrate the different
configurations of the extended stacks P and Aux (stack P is
positioned above stack Aux throughout, and the action taken is
stated between the two stacks).

As D (a non-terminal) is on top of stack P and float is the
first symbol of ω, check M [D, float]. This gives the production
D T {1.1} L ; {1.2}. Therefore, move D from stack P to
stack Aux and push the right side of the production onto stack P
(Fig. 8(b)).

id x
{3} - {4.1} -

{1.1} - {1.1} - R -
L - L - L float {4.2} -
; - ; - ; - ; -

{1.2} - {1.2} - {1.2} - {1.2} -
$ - $ - $ - $ -

{3} {1.1} M[L,id] id

float - L float
T - T float T float T float
D - D - D - D -

(d) (e) (f) (g)

Fig. 9. Stack configurations 4 to 7 (‘x, y;’ is in the input).

, -
{5.1} - {5.1} -

{4.1} - L - L -
R - R float {5.2} - {5.2} -

{4.2} - {4.2} - {4.2} - {4.2} -
; - ; - ; - ; -

{1.2} - {1.2} - {1.2} - {1.2} -
$ - $ - $ - $ -

{4.1} M[R,,] , {5.1}

, -
R float R float

id x id x id x id x
L float L float L float L float
T float T float T float T float
D - D - D - D -

(h) (i) (j) (k)

Fig. 10. Stack configurations 8 to 11 (‘, y;’ is in the input).

As shown in Fig. 8(c) we find that there is a terminal float
on top of stack P. As this matches the current input symbol,
transfer it from stack P to stack Aux and move ip ahead to point
to the next input symbol (id).

The next element on top of stack P is the semantic action
{3} to be executed. This action is {Aux [top – 1]:= float;
Pop (1)}. First, insert float as the attribute value of symbol T
(the second symbol from the top of stack Aux). Then execute
the Pop function, which removes one element (float) from the
top of stack Aux (Fig. 9(e)).

id y
{4.1} - {4.1} -

R - R - R float
L float {4.2} - {4.2} - {4.2} -

{5.2} - {5.2} - {5.2} - {5.2} -
{4.2} - {4.2} - {4.2} - {4.2} -

; - ; - ; - ; -
{1.2} - {1.2} - {1.2} - {1.2} -

$ - $ - $ - $ -

M[L,id] id {4.1} M[R,;]

id y id y
L float L float L float

, - , - , - , -
R float R float R float R float
id x id x id x id x
L float L float L float L float
T float T float T float T float
D - D - D - D -

(l) (m) (n) (o)

Fig. 11. Stack configurations 12 to 15 (‘y ;’ is in the input).

EVALUATION OF SEMANTIC ACTIONS IN PREDICTIVE NON-RECURSIVE PARSING 495

{4.2} -
{5.2} - {5.2} -
{4.2} - {4.2} - {4.2} -

; - ; - ; - ; -
{1.2} - {1.2} - {1.2} - {1.2} -

$ - $ - $ - $ -

{4.2} {5.2} {4.2} ;

R float
id y
L float L float
, - , -
R float R float R float
id x id x id x
L float L float L float L float
T float T float T float T float
D - D - D - D -

(p) (q) (r) (s)
Fig. 12. Stack configurations 16 to 19 (‘;’ is in the input).

As shown in Fig. 9(g), the id token has an attribute gathered
directly from the scanner. This attribute is handled as a
reference to the symbol table entry for this identifier. We
represent the attribute using just the name of the identifier in
the source code (x). Later the semantic action {4.1} is on top of
stack P (Fig. 10(h)). Its execution copies float from stack Aux
to stack P ({P [ntop]:= Aux [top – 1]}) as the attribute value of
symbol R. The analysis continues as shown in Figs. 10 to 12.

In addition, two actions executed in this example
(specifically, semantic action {4.1} executed in Fig. 10(h) and
Fig. 11(n)) will have included type information about the x and
y float identifiers in the compiler’s symbol table.

Fig. 13(t) shows the execution of action {1.2} that removes
three symbols from the stack Aux. Fig. 13(u) represents the
algorithm exit condition.

{1.2} -
$ - $ -

{1.2} end

; -
L float
T float
D - D -

(t) (u)
Fig. 13. Final stack configurations having read the whole input string.

VI. CONCLUSIONS
We have introduced a simple method and an algorithm to

manage the evaluation of semantic actions in predictive non-
recursive top-down LL(1) parsing. The main advantage of this
method is that it can evaluate semantic actions at the same time
as it parses. The main goal of this simultaneous execution is to
save compiler resources (including both execution time and
memory), since a compiler of this kind no longer needs to
explicitly build a complete tree parser.

This method has been taught in a compilers course at the
Technical University of Madrid’s School of Computing for the
last 6 years. As part of this course, students are expected to
build a compiler for a subset of a programming language.
About one third of students used this method, with very
encouraging results. The method has proved to be easy to
implement and understand.

The two criteria imposed in section 3 are merely to simplify
the translator design. But the method is general and can be
applied to any L-attributed translation scheme for an LL(1)
grammar. Additionally, the tests run by students from our
School on their compilers have shown that it is an efficient and
simple way to perform the task of top-down syntax-directed
translation.

REFERENCES
[1] A.V. Aho, R. Sethi, J.D. Ullman, Compilers. Principles, Techniques and

Tools, Addison-Wesley, 1985.
[2] R. Akker, B. Melichar, J. Tarhio, “Attribute Evaluation and Parsing”,

Lecture Notes in Computer Science, 545, Attribute Grammars,
Applications and Systems, 1991, pp. 187-214.

[3] T. Noll, H. Vogler, “Top-down Parsing with Simultaneous Evaluation of
Noncircular Attribute Grammars”, Fundamenta Informaticae, 20(4),
1994, pp. 285-332.

[4] K. Müller, “Attribute-Directed Top-Down Parsing”, Lecture Notes in
Computer Science, 641, Proc. 4th International Conference on Compiler
Construction, 1992, pp. 37-43.

[5] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers. Principles,
Techniques and Tools, 2nd ed., Addison-Wesley, 2007.

[6] N. Chomsky, “Three models for the description of language”, IRE
Transactions on Information Theory, 2, 1956, pp. 113-124.

[7] T. Tokuda, Y. Watanabe, An attribute evaluation of context-free
languages, Technical Report TR93-0036, Tokyo Institute of
Technology, Graduate School of Information Science and Engineering,
1993.

[8] D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Lagendoen, Modern Compiler
Design, John Wiley & Sons, 2000.

[9] O.G. Kakde, Algorithms for Compiler Design, Laxmi Publications,
2002.

[10] S.S. Muchnick, Advanced Compiler Design & Implementation, Morgan
Kaufmann Publishers, 1997.

FUERTES AND PÉREZ 496

	cover-large
	indice
	LL

