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Abstract— To implement a syntax-directed translator, compiler 
designers always have the option of building a compiler that first 
performs a syntax analysis and then transverses the parse tree to 
execute the semantic actions in order. Yet it is much more 
efficient to perform both processes simultaneously. This avoids 
having to first explicitly build and afterwards transverse the 
parse tree, which is a time- and resource-consuming and 
complex process. This paper introduces an algorithm for 
executing semantic actions (for semantic analysis and 
intermediate code generation) during predictive non-recursive 
LL(1) parsing. The proposed method is a simple, efficient and 
effective method for executing this type of parser and the 
corresponding semantic actions jointly with the aid of no more 
than an auxiliary stack. 

I. INTRODUCTION  
A parser uses a context-free grammar (G) to check if the 

input string syntax is correct. Its goal is to build the syntax tree 
for the analyzed input string. To do this, it applies the grammar 
rules. The set of valid strings generated by this grammar is the 
language (L(G)) recognized by the parser. 

An LL(1) parser is built from an LL(1) grammar. The 
symbols of the grammar are input into a stack. The non-
terminal symbol on the top of the stack and the current symbol 
of the input string determine the next grammar rule to be 
applied at any time.  

A syntax-directed translator is built by defining attributes 
for the grammar symbols and semantic actions to compute the 
value of each attribute depending on others. This translator 
performs syntax analysis, semantic analysis, and code 
(intermediate or object) generation tasks. 

Semantic action execution [1] can be easily integrated into 
several different parser types. But if you have designed a 
compiler with a predictive non-recursive LL(1) parser, you will 
find that attributes for grammar symbols that have been 
removed from the LL(1) parser stack are required to execute 
most of the semantic actions [2]. 

One possible solution is to build the parser tree and then 
transverse this tree at the same time as the semantic actions are 
performed. The attribute values are annotated in the tree nodes. 
Evidently, there is a clear efficiency problem with this solution. 
It also consumes an unnecessarily large quantity of resources 
(memory to store the whole tree, plus the node attributes, 
execution time…), not to mention the extra work on 
implementation. For this reason, a good approach is to evaluate 

the semantic actions at the same time as syntax analysis is 
performed [3] [4]. 

Semantic actions can be evaluated during LL parsing by 
extending the parser stack. The extended parser stack holds 
action-records for execution and data items (synthesize-
records) containing the synthesized attributes for non-
terminals. The inherited attributes of a non-terminal A are 
placed in the stack record that represents that non-terminal. On 
the other hand, the synthesized attributes for a non-terminal A 
are placed in a separate synthesize-record right underneath the 
record for A in the stack [5]. 

In this article, we introduce an algorithm for a top-down 
translator that provides a simpler, more efficient and effective 
method for executing an LL(1) parser and the corresponding 
semantic actions jointly with the aid of no more than an 
auxiliary stack. 

The remainder of the article is organized as follows. Section 
II reviews the notions of top-down translators. Section III 
describes how the proposed top-down translator works, and 
section IV introduces an algorithm to implement this translator. 
Section V shows an example of how this method works. 
Finally, section VI outlines some conclusions. 

II. RELATED WORK 
This section reviews the concepts of top-down parsers and 

translation schemes that can be used to cover semantic and 
code generation aspects. 

A. Top-Down Parser 
A parser applies context-free grammar rules [6] to try to 

find the syntax tree of the input string. A top-down parser 
builds this tree from the root to the leaves. At the end of the 
analysis, the tree root contains the grammar’s start symbol 
and the leaves enclose the analyzed string, provided this is 
correct. 

 
Fig. 1. Overview of an LL parser 
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Fig. 2. LL(1) parsing table. 

Additionally, a compiler parser always has to produce the 
same parser tree for each input string. In the case of an LL(k) 
parser, the mechanism used to assure that there is only one rule 
applicable at any time is an LL(k) grammar. This grammar 
finds out which rule has to be applied by looking ahead at most 
k symbols in the input string. The simplest grammar of this 
type is LL(1). LL(1) finds out which rule to apply by looking 
no further than the first symbol in the input string. 

An LL parser (Fig. 1) uses a stack (P) of grammar symbols 
and a table (M). The table (M) stores information on which rule 
to use to expand a non-terminal symbol on the top of the stack 
(A) depending on the current input symbol (ai). 

As initially configured the stack contains a symbol to 
indicate the bottom of stack ($) with the grammar’s start 
symbol on top. 

The rows of the LL(1) parsing table (Fig. 2) contain the 
non-terminal symbols. The table columns include the terminal 
symbols (set of valid input symbols) plus the end-of-string 
symbol ($). The table cells can contain a grammar production 
or be empty. If the parser accesses an empty cell, there is a 
syntax error in the input string. By definition, an LL can 
evidently never have more than one rule per cell. 

If there is a non-terminal symbol, A, on top of the stack, the 
parser inspects the current input symbol, ai, and looks up the 
matching table cell, M [A, ai], as shown in Fig. 1. This cell 
contains the rule to be applied (see Fig. 2). Then the non-
terminal symbol A that was on top of stack P is removed and 
replaced by the right side of the applied rule. The symbol that 
was in the left-most position on the right side of the production 
(in this case X) is now on top of the stack (see Fig. 3). This is 
the next symbol to be expanded. 

If there is a terminal symbol on top of the stack, it must 
match the current input symbol. If they are equal, the parser 
takes out the symbol on top of the stack and moves ahead to the 
next symbol in the input string. Otherwise, the parser discovers 
that the syntax of the input string is incorrect. 

 
Fig. 3. Configuration of the parser after expanding rule A  X Y Z. 

B. Translation Schemes 
A context-free grammar accounts for the syntax of the 

language that it generates but cannot cover aspects of the 
semantics of this language. For example, let rule (1) be: 
S  id := E (1)

Rule (1) reproduces a language’s assignation sentence 
syntax perfectly. But it is no use for checking whether the 
expression and identifier types are compatible or, conversely, 
the programmer is trying to assign an invalid value to that 
identifier.  

A translation scheme is a context-free grammar in which 
attributes are associated with the grammar symbols and 
semantic actions are inserted within the right sides of 
productions [1]. These semantic actions are enclosed between 
brackets { }. The attributes in each production are computed 
from the values of the attributes of grammar symbols involved 
in that production [7]. 

So, a translation scheme can include semantic information 
by defining: 

• as many attributes as semantic aspects need to be stated 
for each symbol 

• semantic actions that compute attribute values. 
For rule (1), for example, the type attribute would be used 

for both the identifier (id) and the expression (E), and it would 
need to check that id.type is equal to or compatible with E.type. 

There are two kinds of attributes: synthesized and inherited 
[8]. An attribute is synthesized if its value in a tree node 
depends exclusively on the attribute values of the child nodes. 
In any other case, it is an inherited attribute. In rule (2), for 
example, A.s is synthesized and Y.i is inherited. 
A  X {Y.i:= g (A.i, X.s)} Y Z {A.s:= f (X.s, Y.i)} (2)

An L-attributed translation scheme assures that an action 
never refers to an attribute that has not yet been computed. An 
L-attributed translation scheme uses a subset of attributes [9] 
formed by: 

• all the synthesized attributes 
• inherited attributes for which the value of an attribute in a 

node is computed as a function of the inherited attributes 
of the parent and/or attributes of the sibling nodes that are 
further to the left than the node. 

Whereas the Y.i and A.s attributes in rule (2) above meet 
this requirement, the attribute X.i would not if the rule included 
the semantic action X.i:= h (A.s, Z.i). 

III. PROPOSED TOP-DOWN TRANSLATOR 
In this section we introduce the design of the proposed top-

down translator that can output the translation (the intermediate 
or object code in the case of a compiler) at the same time as it 
does predictive non-recursive parsing. This saves having to 
explicitly build the annotated parse tree and then transverse it 
to evaluate the semantic actions (perhaps also having to build 
the dependency graph [10] to establish the evaluation order).  

We use an L-attributed translation scheme as a notation for 
specifying the design of the proposed translator. To simplify 
translator design, we consider the following criteria: 

Criterion 1. A semantic action computing an inherited symbol 
attribute will be placed straight in front of that symbol. 
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Criterion 2. An action computing a synthesized attribute of 
a symbol will be placed at the end of the right side of the 
production for that symbol. 

For example, (3) would be a valid rule: 
X  Y1 Y2  {Y3.i:=f(X.i, Y1.s)}  

Y3 Y4 Y5  {X.s:=g(Y3.i, Y4.s)} (3)

To generate the proposed top-down translator the LL(1) 
parser is modified as follows. First, stack P is modified to 
contain not only grammar symbols but also semantic actions. 
Second, a new stack (Aux) is added. This stack will temporally 
store the symbols removed from stack P. Both stacks are 
extended to store the attribute values (semantic information). 

Let us now look at how the attribute values will be 
positioned in each stack. To do this, suppose that we have a 
generic production X  α. This production contains semantic 
actions before and after each grammar symbol, where 
α ≡ {1} Y1 {2} Y2... {k} Yk {k+1}. 

Fig. 4 shows the parser stack P and the auxiliary stack Aux, 
both augmented to store the symbol attributes. For simplicity’s 
sake, suppose that each grammar symbol has at most one 
attribute. If it had more, each position in the extended stacks 
would be a register with one field per attribute. 

Suppose that these stacks are configured as shown in Fig. 4, 
with semantic action {i} at the top of stack P. This means, as 
we will see from the algorithm presented in section 4, that this 
semantic action should be executed. There is a pointer to the 
top of each stack. After executing the semantic action {i}, there 
will be another pointer to the new top (ntop) of stack P.  

Because of the above-mentioned Criterion 1, the semantic 
action {i} uses an inherited attribute of X and/or any attribute of 
any symbol Yj (1 ≤ j < i) on the right side of the production to 
compute the inherited attribute of Yi. If i = k + 1, the action {i} 
computes the synthesized attribute of X, because of Criterion 2. 
The following then applies. 

• Case 1. The semantic action {i} computes the inherited 
attribute of Yi. 
The symbol Yi will be in stack P, right underneath 
action {i}, which is being executed. Thus, Yi will be the 
new top (ntop) of stack P at the end of this execution. 
The reference to an inherited attribute of Yi can be 
viewed as an access to stack P and, specifically, 
position P [ntop]. 

• Case 2. The semantic action {i} contains a reference to 
an attribute of X. 

{i} -
Yi at i Yi-1 at i-1

{i+1} - … …
Yi+1 at i+1 Y3 at 3
… … Y2 at 2
Yk at k Y1 at 1

{k+1} - X at
… … … …

Stack P Stack Aux

top

ntop
top

 
Fig. 4. Translator stacks P and Aux after applying X  α while processing the 

elements of α. 

By definition of the L-attributed translation scheme, 
this will always be a reference to an inherited attribute 
of X. Only if i = k + 1 will there be a reference to a 
synthesized attribute of X. As X will have already been 
removed from stack P when the rule X  α was 
applied, the symbol X will have been entered in stack 
Aux. All the grammar symbols Y1, Y2... Yi-1 (preceding 
the semantic action {i}) will be on top of X. These 
symbols will have been removed from P and inserted 
into Aux. Then any reference in {i} to an attribute of X 
can be viewed as an access to stack Aux, specifically, 
position Aux [top – i + 1]. 

• Case 3. The semantic action {i} contains a reference to 
an attribute of some symbol of α. 
By definition of the L-attributed translation scheme, 
this attribute will necessarily belong to a symbol 
positioned to the left of action {i}, i.e. to one of the 
symbols Y1, Y2... Yi-1. These symbols will have already 
been moved from stack P to stack Aux. Then any 
reference to an attribute of any of these symbols of α 
can be viewed as an access to stack Aux taking into 
account that Yi-1 will be on Aux [top], Yi-2 will be on 
Aux [top – 1]... Y1 will be on Aux [top – i + 2].  

The translator is implemented by programming the 
semantic actions and inserting them into the parser code. These 
semantic actions were written in terms of grammar symbols 
and attributes in the translation scheme. They now have to be 
rewritten in terms of accesses to the exact stack positions 
containing the values of the symbol attributes referenced in 
each semantic action. 

The two criteria are designed merely to simplify the 
translator design. But the method would also work provided 
that the semantic action computing an inherited attribute of a 
symbol is located before, but not necessarily straight in front 
of, that symbol (Criterion 1). It would also be operational if the 
semantic action computing a synthesized attribute of, the 
symbol located on the left side of the production (X.s) is not at 
the right end of the production (Criterion 2) but depends 
exclusively on symbol attributes to its left. Therefore, we could 
also use rule (4) instead of rule (3). In the first semantic action, 
attribute Y3.i will be positioned in the middle of stack P, 
specifically P [ntop – 1] in this case. The second semantic 
action is also a valid action because X.s does not depend on Y5. 
The referenced attributes will be in stack Aux (Y3.i at Aux [top –
 1], Y4.s at Aux [top] and X.s at Aux [top – 4]. 
X Y1  {Y3.i:= f (X.i, Y1.s)} 

Y2 Y3 Y4  {X.s:= g (Y3.i, Y4.s)}  Y5 
(4)

IV. TOP-DOWN TRANSLATOR ALGORITHM 
Having established the principles of the proposed top-down 

translator, we are now ready to present the algorithm. This 
algorithm is an extended version of the table-driven predictive 
non-recursive parsing algorithm that appears in [1]. 

The algorithm uses a table M’. This table is obtained from 
the LL parser table M by substituting the rules of the grammar 
G for the translation scheme rules (which include the modified 
semantic actions for including stack accesses instead of 
attributes). Then the proposed top-down translator algorithm is 
described as follows: 
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Input. An input string ω, a parsing table M for grammar G 
and a translation scheme for this grammar. 

Output. If ω is in L(G), the result of executing the 
translation scheme (translation to intermediate or object code); 
otherwise, an error indication. 

Method. The process for producing the translation is: 
1. Each reference in a semantic action to an attribute is 

changed to a reference to a position in the stack (P or Aux) 
containing the value of this attribute. Then the translation 
scheme is extended by adding a new semantic action at the 
end of each production. This action pops as many elements 
from the stack Aux as grammar symbols there are in the 
right side of the production. Finally, this modified 
translation scheme is incorporated into table M, leading to 
table M’. 

2. Initially, the configuration of the translator is: 
• $S is in stack P, with S (the start symbol of G) on top, 
• the stack Aux is empty, and 
• ω$ is in the input, with ip pointing to its first symbol. 

3. Repeat 
Let X be the symbol on top of stack P 
Let a be the input symbol that ip points to  
If X is a terminal Then 

If X = a Then 
Pop X and its attributes out of stack P 
Push X and its attributes onto stack Aux 
Advance ip 

Else Syntax-Error () 
If X is a non-terminal Then 

If M [X, a] = X  {1} Y1 {2} Y2… {k} Yk {k+1} 
Then 
Pop X and its attributes out of stack P 
Push X and its attributes onto stack Aux 
Push {k+1}, Yk, {k}… Y2, {2}, Y1, {1} onto stack 

P, with {1} on top 
Else Syntax-Error () 

If X is a semantic action {i} Then 
Execute {i} 
Pop {i} out of stack P 

 Until X = $ and Aux = S 

V. EXAMPLE 
To illustrate how the method works let us use a fragment of 

a C/C++ grammar (Fig. 5) designed to declare local variables. 
Fig. 6 shows the translation scheme for this grammar. 

Based on the translation scheme, apply step 1 of the 
algorithm described in section 4 to build the modified version 
of the translation scheme (see Fig. 7). In Fig. 7, references to 
the inherited attributes L.type in rule (1) and rule (5) and R.type 
in rule (4) have been changed to references to new top (ntop) of 

stack P. References to other attributes have been replaced with 
references to stack Aux. New semantic actions (calls to the Pop 
function) are included to remove symbols that are no longer 
needed from stack Aux. The number of symbols to be removed 
is the number of grammar symbols on the right side of the 
production. This number is passed to the Pop function. 

Table 1 shows table M’ for the modified translation scheme 
that includes references to stack positions instead of attributes. 
We have numbered the semantic actions with the production 
number and, if necessary, with a second digit showing the order 
of the semantic action inside the production. For instance, 
action {1.1} represents {P [ntop]:= Aux [top]}, the first action 
of production (1), whereas action {1.2} represents {Pop (3)}, 
the second action of production (1). 

To illustrate how the translator works, consider the input: 
‘float x, y;’. This string is tokenized by the scanner as the input 
string ω ≡ float id, id;. 

(1) D  T L ; 
(2) T  int 
(3) T  float 
(4) L  id R 
(5) R  , L 
(6) R  λ  

Fig. 5. Grammar for C/C++ variables declaration. 

(1) D  T {L.type:= T.type} 
  L ; 
(2) T  int {T.type:= integer} 
(3) T  float {T.type:= float} 
(4) L  id {insertTypeST (id.ptr, L.type); 
   R.type:= L. type} 
  R 
(5) R  , {L.type:= R.type} 
  L 
(6) R  λ {} 

Fig. 6. Translation scheme for C/C++ variables declaration. 

(1) D  T {P[ntop]:= Aux[top]} 
  L ; {Pop (3)} 
(2) T  int {Aux[top-1]:= integer; Pop (1)} 
(3) T  float {Aux[top-1]:= float; Pop (1)} 
(4) L  id {insertTypeST (Aux[top], Aux[top-1]); 
   P[ntop]:= Aux[top-1]} 
  R {Pop (2)} 
(5) R  , {P[ntop]:= Aux[top-1]} 
  L {Pop (2)} 
(6) R  λ {} 

Fig. 7. Modified translation scheme for C/C++ variables declaration including 
references to stack positions. 

TABLE 1 
TABLE M’ FOR THE MODIFIED TRANSLATION SCHEME ILLUSTRATED IN FIG. 7. 

M’ id int float ; , $ 
D  D  T {1.1} L ; {1.2} D  T {1.1} L ; {1.2}    
T  T  int {2} T  float {3}    
L L  id {4.1} R {4.2}      
R    R  λ R  , {5.1} L {5.2}  
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Stack P:

float -
T - {3} -

{1.1} - {1.1} -
L - L -
; - ; -

D - {1.2} - {1.2} -
$ - $ - $ -

Action: M[D,float] M[T,float] float

Stack Aux:

T -
D - D -

(a) (b) (c)

 
Fig. 8. First stack configurations (the input string is ‘float x, y;’). 

The stacks are initialized (Fig. 8(a)) with $ and the 
grammar start symbol (D). Figs. 8 to 13 illustrate the different 
configurations of the extended stacks P and Aux (stack P is 
positioned above stack Aux throughout, and the action taken is 
stated between the two stacks). 

As D (a non-terminal) is on top of stack P and float is the 
first symbol of ω, check M [D, float]. This gives the production 
D  T {1.1} L ; {1.2}. Therefore, move D from stack P to 
stack Aux and push the right side of the production onto stack P 
(Fig. 8(b)). 

id x
{3} - {4.1} -

{1.1} - {1.1} - R -
L - L - L float {4.2} -
; - ; - ; - ; -

{1.2} - {1.2} - {1.2} - {1.2} -
$ - $ - $ - $ -

{3} {1.1} M[L,id] id

float - L float
T - T float T float T float
D - D - D - D -

(d) (e) (f) (g)

 
Fig. 9. Stack configurations 4 to 7 (‘x, y;’ is in the input). 

, -
{5.1} - {5.1} -

{4.1} - L - L -
R - R float {5.2} - {5.2} -

{4.2} - {4.2} - {4.2} - {4.2} -
; - ; - ; - ; -

{1.2} - {1.2} - {1.2} - {1.2} -
$ - $ - $ - $ -

{4.1} M[R,,] , {5.1}

, -
R float R float

id x id x id x id x
L float L float L float L float
T float T float T float T float
D - D - D - D -

(h) (i) (j) (k)

 
Fig. 10. Stack configurations 8 to 11 (‘, y;’ is in the input). 

As shown in Fig. 8(c) we find that there is a terminal float 
on top of stack P. As this matches the current input symbol, 
transfer it from stack P to stack Aux and move ip ahead to point 
to the next input symbol (id). 

The next element on top of stack P is the semantic action 
{3} to be executed. This action is {Aux [top – 1]:= float; 
Pop (1)}. First, insert float as the attribute value of symbol T 
(the second symbol from the top of stack Aux). Then execute 
the Pop function, which removes one element (float) from the 
top of stack Aux (Fig. 9(e)). 

id y
{4.1} - {4.1} -

R - R - R float
L float {4.2} - {4.2} - {4.2} -

{5.2} - {5.2} - {5.2} - {5.2} -
{4.2} - {4.2} - {4.2} - {4.2} -

; - ; - ; - ; -
{1.2} - {1.2} - {1.2} - {1.2} -

$ - $ - $ - $ -

M[L,id] id {4.1} M[R,;]

id y id y
L float L float L float

, - , - , - , -
R float R float R float R float
id x id x id x id x
L float L float L float L float
T float T float T float T float
D - D - D - D -

(l) (m) (n) (o)

 
Fig. 11. Stack configurations 12 to 15 (‘y ;’ is in the input). 
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{4.2} -
{5.2} - {5.2} -
{4.2} - {4.2} - {4.2} -

; - ; - ; - ; -
{1.2} - {1.2} - {1.2} - {1.2} -

$ - $ - $ - $ -

{4.2} {5.2} {4.2} ;

R float
id y
L float L float
, - , -
R float R float R float
id x id x id x
L float L float L float L float
T float T float T float T float
D - D - D - D -

(p) (q) (r) (s)  
Fig. 12. Stack configurations 16 to 19 (‘;’ is in the input). 

As shown in Fig. 9(g), the id token has an attribute gathered 
directly from the scanner. This attribute is handled as a 
reference to the symbol table entry for this identifier. We 
represent the attribute using just the name of the identifier in 
the source code (x). Later the semantic action {4.1} is on top of 
stack P (Fig. 10(h)). Its execution copies float from stack Aux 
to stack P ({P [ntop]:= Aux [top – 1]}) as the attribute value of 
symbol R. The analysis continues as shown in Figs. 10 to 12. 

In addition, two actions executed in this example 
(specifically, semantic action {4.1} executed in Fig. 10(h) and 
Fig. 11(n)) will have included type information about the x and 
y float identifiers in the compiler’s symbol table. 

Fig. 13(t) shows the execution of action {1.2} that removes 
three symbols from the stack Aux. Fig. 13(u) represents the 
algorithm exit condition.  

{1.2} -
$ - $ -

{1.2} end

; -
L float
T float
D - D -

(t) (u)  
Fig. 13. Final stack configurations having read the whole input string. 

VI. CONCLUSIONS 
We have introduced a simple method and an algorithm to 

manage the evaluation of semantic actions in predictive non-
recursive top-down LL(1) parsing. The main advantage of this 
method is that it can evaluate semantic actions at the same time 
as it parses. The main goal of this simultaneous execution is to 
save compiler resources (including both execution time and 
memory), since a compiler of this kind no longer needs to 
explicitly build a complete tree parser. 

This method has been taught in a compilers course at the 
Technical University of Madrid’s School of Computing for the 
last 6 years. As part of this course, students are expected to 
build a compiler for a subset of a programming language. 
About one third of students used this method, with very 
encouraging results. The method has proved to be easy to 
implement and understand. 

The two criteria imposed in section 3 are merely to simplify 
the translator design. But the method is general and can be 
applied to any L-attributed translation scheme for an LL(1) 
grammar. Additionally, the tests run by students from our 
School on their compilers have shown that it is an efficient and 
simple way to perform the task of top-down syntax-directed 
translation. 
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